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We investigate the solvability of equations

Q(f, f)+E2Df=0 (a)

in term of nonnegative integrable densities f ¥ L1+(R
3). Here, Q(f, f) is a gen-

eralized collision operator. If Q is the Boltzmann operator, the only solution is
0. In contrast, we show that if Q is the pseudo-Maxwellian collision operator for
granular flow, then there are non-trivial weak solutions of (a).

KEY WORDS: Diffusive equilibria; kinetic granular flow.

1. INTRODUCTION

We are concerned with equations of the type

Q(f, f)+E2 Df=0 (1)

where E > 0 is a positive constant and Q(f, f) is a collision operator of
Boltzmann type. Equation (1) arises in a variety of mathematical and phy-
sical contexts, such as

(i) when a diffusion term with respect to velocity is added to the
full, spatially inhomogeneous Boltzmann equation in order to facilitate
regularity estimates, needed for global existence and uniqueness. (1) Solu-
tions of (1), if any, become the counterparts of Maxwellian equilibria for
this case;



(ii) when Q(f, f) is a generalized collision operator which is such
that the equation Q(f, f)=0 has only the trivial solutions f(v)=cdv0 (v).
This happens, for example, for rather reasonable kinetic models of traffic
flow, (2–4) or for the generalized collision operator associated with kinetic
granular flow. (6, 7) The latter example is the main topic of the present paper;
for studies on traffic flow we refer to the above-mentioned references. The
physical motivation for adding E2 Df to the collision operator is, of course,
that the particle system in question is immersed in a heat bath. We will refer
to this effect as ‘‘diffusion’’ and will distinguish it from other ‘‘dissipative’’
effects such as convergence towards a properly normalized Maxwellian,
enforced by theH-theorem, in the Boltzmann equation example.

The proper solution concept for (1) is that f \ 0, f ¥ L1+, Df ¥ L1, and
>R3f(v) dv=C (C > 0 is a free parameter; by rescaling f̃=f

C , one obtains
> f̃=1, and f̃ solves (1) for Ẽ2=E2/C; for the rest of this paper we set
C=1). Additional constraints on f vary slightly from example to example.

We begin our series of results with a first, simple, slightly surprising result.

Theorem 1.1. If Q(f, f) is the Boltzmann collision operator, then
the only non-negative smooth solution of (1) for which the entropy pro-
duction associated with Q(f, f) is defined, is zero.

Proof. Suppose f \ 0 solves (1). We multiply (1) by ln f and
integrate >R3 · · · dv, to find

e(f)+E2 F
R3
Df ln f=0. (2)

e(f) is the entropy production term, and e(f) [ 0 with equality only if f
is Maxwellian. As for the second term in (2), we integrate by parts to find

F
R3
Df ln f=− F

R3

1
f
| Nf|2 dv,

so this term is also nonpositive. It follows that (1) can only hold iff — 0. L

Remark 1. If f is assumed nonnegative and such that >R3 v2f(v) dv
<., then it also follows that f — 0: multiply Eq. (1) by v2, integrate, use
energy conservation and integration by parts to find

0=F
R3

v2Q(f, f) dv+E2 F
R3

v2 Df dv=0+6E2 F
R3

f dv

so >R3 f dv=0, hence f — 0.
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These results put an end to every quest of finding diffusive equilibria
for the Boltzmann equation. The diffusion term is simply stronger than the
entropy-driven trend to Maxwellians, and the asymptotic effect is that par-
ticles escape with higher and higher velocity.

Remark 2. This picture must change in spatially inhomogeneous
scenarios with, say, diffusive boundary conditions at the boundary “W of a
bounded domain W; the counterpart to (1) would then be

v Nxf=Q(f, f)+E2 Nvf,

complemented by diffusive boundary conditions. This is a different type of
problem which we do not address here.

Remark 3. For the Boltzmann–Fokker–Plank collision operator

Q(f, f)+
1
y
divv(vf+h Nvf)=0 (3)

the extra drift term ensures the existence of non-trivial Maxwellians with
temperature h:

f(v)=
r

(2ph)3/2
exp 1 − v2

2h
2 .

This f is annihilated by both terms in (3).

In the present paper we focus on scenarios where (1) may permit non-
trivial solutions, with an emphasis on the granular flow case. In Section 2
we present case studies to demonstrate the fragility of the solvability of (1)
with respect to the choice of Q(f, f). In Section 3 we introduce the granular
flow collision operator. After restricting the generality to Maxwellian mole-
cules we present key estimates which prove that mass and momentum are
conserved by particle interactions, but energy is diminished. We then
restrict our attention to the spherically symmetric case, for which the key
estimate sharpens. Schauder’s fixed point theorem is used to prove a
general existence theorem for the spherically symmetric granular flow
collision operator. In Section 4, we point out possible generalizations and
present a list of open problems.
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2. CASE STUDIES

We first demonstrate that the presence of a loss part to the collision
term is essential for the solvability of our class of problems. To this end, we
discuss two examples in one real variable, so u=u(x), where x ¥ R.

Example 1.

E2uxx+u2=0 (4)

Theorem 2.1. There is no solution of (4) such that u \ 0 and
>.−. u(x) dx=1.

Proof. The easiest way to see this is that (4) cannot hold at inflection
points (x0, u(x0)) where u(x0) > 0, yet a solution satisfying u \ 0 and
>.−. u(x) dx <. must have such inflection points. L

A more systematic way of proving this is as follows (we take E=1):
from (4), uxxux+u2ux=0, i.e.,

d
dx
51 1

2
u2x 2+

1
3
u36=0,

so
1
2 u
2
x+

1
3 u
3=C. (5)

C must be zero to satisfy the integrability condition at ±.. Thus ux=
±`− 23 u

3 , which shows that there are no solutions with u > 0.
Another method to prove our result follows the idea of Remark 1. We

omit the details.

Example 2.

E2uxx+u(u−1)=0. (6)

This example is a lot closer to (1). We have a ‘‘collision’’ operator
Q(u, u)=u2−u. The solutions of (6) such that u \ 0 and >.−. u(x) dx <.
can be found explicitly. We first observe that it follows from (6) that if
u(a)=1, then u has an inflection point at x=a: uxx(a)=0. As in Example 1
we set E=1 and integrate (6) explicitly using u(a)=1, ux(a)=−b as initial
conditions. This yields

− 12 (ux)
2=1

3 u
3− 12 u

2+C,

C=− 1
2 b

2+1
6
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Fig. 1. Equilibrium Solution for Example 2.

or

u2x=b
2− 13+u2(1− 23 u).

u(x) and ux(x) must converge to zero as x0 ±., so we see that b= 1
`3

.
This leaves

u2x=u2(1− 23 u),

which integrates to

u(x)=
3
2
11−1 1+Ce−x

1−Ce−x
222 (7)

where C=`3−3

`3+3
ea < 0. In fact, we can choose a ¥ R to reach any

C ¥ (−., 0). For C=−1, we have u(x)=u(−x), and this is the unique
solution which satisfies this symmetry in addition to being nonnegative and
integrable. Equation (6) is invariant under translations xQ x+x0, and
other choices of C (or a) simply give translated versions of u. Specifically,
to obtain the unique solution which is symmetric about x0=−a, one has to
choose C such that Cea=−1, i.e., C=−e−a.

3. GRANULAR FLOW

Let us now focus on the collision operator associated with pseudo-
Maxwellian inelastic interactions in kinetic granular flows.
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We use the formulation as presented in refs. 6 and 7. The collision
operator Qe(f, f) is given by

Qe(f, f)=
1
4p

F
R3

F
S
2
[f(t, vg) f(t, wg) J−f(t, v) f(t, w)] dn dw, (8)

where vg and wg are the pre-collisional velocities associated to the collision
mechanism,

˛vg=1
2
(v+w)−

1−e
4e

(v−w)+
1+e
4e

|v−w| n

wg=
1
2
(v+w)+

1−e
4e

(v−w)−
1+e
4e

|v−w| n,

(9)

n ¥S2. The number e, 0 < e [ 1, is known as the restitution coefficient.
For e=1 we have elastic collisions, and Q1(f, f)=Q(f, f) becomes a
Boltzmann collision operator with constant collision kernel. J is the
Jacobian determinant J=| “(vg, wg)

“(v, w) |=
1
e . Recall that the classical collision

transformation (with e=1) is involutive, i.e., if S : (v, w)Q (vŒ, wŒ), then
S(vŒ, wŒ)=(v, w). For inelastic collisions this is no longer true. While par-
ticles with velocities vg and wg collide to produce post-collisional velocities
v and w, the inverse of (9) is

˛vŒ=1
2
(v+w)+

1−e
4

(v−w)+
1+e
4

|v−w| n

wŒ=
1
2
(v+w)−

1−e
4

(v−w)−
1+e
4

|v−w| n,

(10)

i.e., (vŒ, wŒ) are post-collisional velocities belonging to the pre-collisional
pair (v, w).

An alternative way of writing (10) is

3vŒ=v−a(nŒ(v−w)) nŒ
wŒ=w+a(nŒ(v−w)) nŒ,

(11)

where 12 < a [ 1. By comparing the differences vŒ−wŒ as obtained from (10)
and (11), we see that −2a(nŒ(v−w)) nŒ=(1+e)[− 12 (v−w)+

|v−w|
2 n]; hence
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Fig. 2. Geometric meanings of v−w, n and nŒ.

(9) and (11) define equivalent transformations if a=1
2 (1+e) and if the unit

vectors nŒ and n are related by

1
2
1 − v−w

|v−w|
+n2=−(cos h) nŒ, cos h=

v−w
|v−w|

·nŒ.

See Fig. 2 for the geometric meaning of v−w, n and nŒ.
Note that as − (v−w)|v−w|+n=−2(cos h) nŒ it follows that

−
v−w
|v−w|

·nŒ+n ·nŒ=−2 cos h,

so −n ·nŒ=cos h. Here, n and nŒ have the same azimut. h should be
thought of as the polar angle of nŒ with respect to a polar axis in direction
of v−w. As nŒ sweeps S2, n will sweep S2

+, the upper hemisphere. The
term ‘‘restitution coefficient’’ is explained by the identity

−(v−w) ·nŒ=e(vg −wg) ·nŒ,

which readily follows from

3v=vg −a((vg −wg)) nŒ) nŒ
w=wg+a((vg −wg)) nŒ) nŒ,

and a=1
2 (1+e).

We are now ready to collect crucial properties of Qe(f, f).
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Lemma 3.1. For f ¥ L1+,

(a)

F
R3

Qe(f, f)(v) dv=0

(b)

F
R3
vQe(f, f)(v) dv=0

(c)

F
R3
v2Qe(f, f)(v) dv=−

1−e2

8
F
R3

F
R3

(v−w)2 f(v) f(w) dv dw (12)

Before we verify these properties, we note an immediate consequence.

Corollary 3.2. The only equilibria solutions of Qe(f, f)(v)=0 are
trivial, i.e., f(v)=cdv0 (v).

Indeed, for all other functions or measures the right hand side of (12)
would not vanish.

Proof of Lemma 3.1. (a) and (b) are elementary; their meaning is
that mass and momentum are conserved. For (c), by explicit calculations

F
R3
v2Qe(f, f)(v) dv

=
1
8p

F
R3

F
R3

F
S
2
(v2+w2)(f(vg) f(wg) J−f(v) f(w)) dn dv dw

=
1
8p

F
R3

F
R3

F
S
2
(v2+w2) f(vg) f(wg) J dn dv dw

−
1
8p

F
R3

F
R3

F
S
2
(v2+w2) f(v) f(w) dn dv dw

:=I1−I2.

In I1 we use the substitution dv dwQ dvg dwg. To this end, we express
v2+w2 in terms of vg, wg. After some calculations using (10) (with vg, wg
replacing v, w and v, w replacing vŒ, wŒ) we find

v2+w2=
1
2
(vg+wg)2+

1+e2

4
(vg −wg)2+

1−e2

4
(vg −wg) |vg −wg | n.
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Hence

I1−I2=
1
8p

F
R3

F
R3

F
S
2
51
2
(v+w)2+

1+e2

4
(v−w)2

+
1−e2

4
(v−w) |v−w| n− v2−w26 f(v) f(w) dn dv dw

=
1
8
(e2−1) F

R3
F
R3

(v−w)2 f(v) f(w) dv dw.

(here we used that >S2 (v−w) ·n dn=0). L

For the sequel we shall use the abbreviations

Qe+(f, f)=
1
4p

F
R3

F
S
2
f(vg) f(wg) J dn dw,

Qe−(f, f)=
1
4p

F
R3

F
S
2
f(v) f(w) dn dw.

Note that if f is normalized such that >R3 f(v) dv=1, then Qe−(f, f)(v)
=f(v).

Corollary 3.3.

F
R3
v2Qe+(f, f)(v) dv

=
1
8p

F
R3

F
R3

F
S
2
51
2
(v+w)2+

1+e2

4
(v−w)26 f(v) f(w) dn dv dw

=
1
2
F
R3

F
R3
51
2
(v+w)2+

1+e2

4
(v−w)26 f(v) f(w) dv dw

Proof. See the proof of Lemma 3.1. L

We now concentrate on the scenario where f(v)=f(|v|)=f(r),
r=|v|, where in a mild abuse of notation we continue to use the same
symbol f. For such f the identity from Corollary 3.3 becomes

4p F
.

0
r4Qe+(f, f)(r) dr=

3+e2

8
F
R3

F
R3

(v2+w2) f(|v|) f(|w|) dv dw. (13)
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Proof. Note that

1
2
(v+w)2+

1+e2

4
(v−w)2

=
1
2
(v+w)2+

1+e2

4
(v2+w2)+v ·w(1−

1
2
(1+e2))

=
3+e2

8
(v2+w2)+

1
2
(1−e2) v ·w.

If f=f(|v|), we see that

F
R3

F
R3
vw f(v) f(w) dv dw=F

R3
1F

R3
|v| |w| cos hf(|w|) dw2 f(|v|) dv=0

(here, cos h= v ·w
|v| |w| ), and the assertion follows. L

In spherical coordinates the identity (13) reads

F
.

0
r4Qe+(f, f)(r) dr=

3+e2

4
1F.
0

r4f(r) dr2 4p F.
0

r2f(r) dr. (14)

In the sequel we will consider (1) under the assumption of spherical
symmetry, and with the (arbitrary) normalization

F
R3

f(v) dv=4p F
.

0
r2f(r) dr=1. (15)

The identity (14) then becomes

F
.

0
r4Qe+(f, f)(r) dr=

3+e2

4
1F.
0

r4f(r) dr2.

We set c :=3+e2

4 and note that 0 < c < 1.
If we accept the normalization (15), Eq. (1) becomes

− E2 Df+f=Qe+(f, f) (16)

or, in spherical coordinates

−
E2

r
“
2
r (rf)+f=Qe+(f, f). (17)
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After multiplication with r, we see that we are looking for a solution of

− E2 “2r (rf)+(rf)=rQe+(f, f) (18)

such that r2f ¥ L1+(0,.), and normalized by (15). To solve (18), we define
an operator T which will enable us to invoke a fixed point argument.
Let X be the Banach space of all integrable functions on (0,.) such that
4p >.0 r2 |f(r)| dr <. and 4p >.0 r4 |f(r)| dr <., equipped with the norm
||f||2 :=4p >.0 r2 (1+r2) |f(r)| dr (X should be thought of as the closed
subset of spherically symmetric integrable functions on R3 such that
>R3 (1+|v|2) f(v) dv <.).

Consider the closed and convex subset DC of X defined by

DC=3f ¥X; f \ 0, 4p F
.

0
r2f(r) dr=1, 4p F

.

0
r4f(r) dr [ C4 .

DC will be the domain of definition of our operator T. For g ¥ DC, we
define f=Tg as the special solution of (19) which satisfies f \ 0 and
4p >.0 r2f(r) dr=1. To identify this solution, we first calculate the general
solution of

− E2 “2r (rf)+(rf)=rQe+(g, g)(r). (19)

To simplify our calculations we will set E=1 (this is no restriction of gen-
erality). If we set h(r)=rf(r), and abbreviate F=Qe+(g, g)(r), then (19)
reads

−hœ+h=rF. (20)

By variation of constants, the general solution of (20) is

h(r)=C1e−r+C2e r+
1
2 F
.

r
e r− ttF(t) dt+1

2 F
r

0
e t−rtF(t) dt. (21)

We want rh(r) to be integrable; this forces the choice C2=0. The choice of
C1 is then determined by the requirement that >.0 rh(r) dr=>.0 r2g(r) dr
and h \ 0.

Lemma 3.3. If C1=−12 >.0 te−tF(t) dt, then h \ 0 and >.0 rh(r) dr=
>.0 r2F(r) dr.

On Diffusive Equilibria in Generalized Kinetic Theory 347



Proof. First note that

h(r)=1
2 F
r

0
e−r (e t−e−t) tF(t) dt+1

2 F
.

r
(e r−e−r) e−ttF(t) dt, (22)

from which h \ 0 is obvious. The identity >.0 rh(r) dr=>.0 r2F(r) dr follows
by explicit integration, after interchange of the order of integration in some
of the integrals. We leave the details to the reader. L

In a more compact form, (22) is

h(r)=e−r F
r

0
t sinh tF(t) dt+sinh r F

.

r
te−tF(t) dt. (23)

Our operator T is therefore defined by the three steps F(r) :=Qe+(g, g)(r),
FQ h as in (23) and f(r) :=1

r h(r).

Lemma 3.4. If g ¥ DC, then f=Tg satisfies

F
.

0
r2f(r) dr=F

.

0
r2g(r) dr=

1
4p

, (24)

F
.

0
r4f(r) dr=c F

.

0
r4g(r) dr+6 F

.

0
r2g(r) dr, (25)

and

F
.

0
rf(r) dr=F

.

0
t(1−e−t) F(t) dt. (26)

Here, c=1
4 (3+e2) (see the identity after (15)).

Proof. Equation (24) is just Lemma 3.3 and Lemma 3.1a combined
(note that part (a) of Lemma 3.1 reads >.0 r2Qe+(f, f)(r) dr=>.0 r2f(r) dr
= 1
4p ). For (25), we compute explicitly

F
.

0
r4f(r) dr=F

.

0
r3h(r) dr

=F
.

0
r3e−r F

r

0
t sinh tF(t) dt dr+F

.

0
r3 sinh r F

.

r
te−tF(t) dt dr

=F
.

0

51F.
t

r3e−r dr2 t sinh t+1F t
0
r3 sinh r dr2 te−t6 F(t) dt

(27)
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Now,

F
.

t
r3e−r dr=(t3+3t2+6t+6) e−t,

and

F
t

0
r3sinh r dr=t3 cosh t−3t2 sinh t+6t cosh t−6 sinh t.

With these integrals the bracket in (27) simplifies to t4+6t2. We arrive
at >.0 r4f(r)=>.0 (r4+6r2) F(t) dt, and recalling that F=Qe+(g, g) and
(14), the assertion follows. Equation (26) follows by an even easier inte-
gration. L

The three identities (24–26) contain three key elements for a fixed
point argument: (24) shows that the L1-norm is left invariant; (25) shows
that mass cannot dissipate away to infinity, and, as we will see, (26) gives
us control at the origin.

We are now ready to formulate and prove the main result of this
paper.

Theorem 3.4. If C \ C0=
6
1− c , then the operator T has a fixed point

in DC. This fixed point is a spherically symmetric diffusive equilibrium for
pseudo-Maxwellian granular flow. It is a distributional solution of (17).

Proof. The estimate

F
.

0
r4f(r) dr [ c

C
4p

+
6
4p

[
C
4p

proves that T maps DC into itself. It is elementary to prove that T is con-
tinuous with respect to the norm || · ||2. To prove that TDC … DC is relatively
compact with respect to the L1-norm, we first observe that

t(1−e−t) [ t2,

so from (26)

F
.

0
rf(r) dr [ F

.

0
t2Qe+(g, g)(t) dt=

1
4p

.
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Therefore, for any E > 0

F
E

0
r2f(r) dr [ E F

.

0
rf(r) dr [

E

4p
,

i.e.,

F
|v| [ E

f(v) dv [ E. (28)

This estimate rules out concentrations at r=0. We emphasize the impor-
tance of (26) for this purpose; it is in this identity where the diffusive
character of D comes to our help.

From >.0 r4f(r) dr [ C
4p it follows that (for R > 1)

F
.

R
r2f(r) dr [ F

.

R

r4

R2
f(r) dr [

1
R2

·
C
4p

. (29)

This estimate gives us uniform control of the mass at ..
Finally, we see from (23) that

hŒ(r)=−e−r F
r

0
t sinh tQe+(g, g)(t) dt+cosh r F

.

r
te−tQe+(g, g)(t) dt,

so

F
.

0
|hŒ(r)| dr [ F

.

0

51F.
t

e−r dr2 t sinh t+1F t
0
cosh r dr2 te−t6 Qe+(g, g)(t) dt

=F
.

0
t(1−e−2t) Qe+(g, g)(t) dt [ 2 F

.

0
t2Qe+(g, g)(t) dt=

1
2p

(30)

This estimate proves that h is of bounded variation. Hence f(r)=h(r)
r is of

uniformly bounded variation on every interval [E, R], E > 0, R <.. In
conjunction with (28) and (29), it follows that TDC is compact in L1. (8) The
assertion of the theorem now follows from the Schauder fixed point
theorem. L

Remark. We are stuck with a weak solution because of the possible
(integrable) singularity at r=0. However, we have observed that the solu-
tion f is in fact better than L1 at r=0. We believe that bootstrapping
arguments and regularity theory can be involved to prove that the solution
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is actually C.. The details of this remain to be worked out—the difficulty
lies in exploiting that when f is better than L1, then Qe+(f, f) must be
better than L1.

3.1. Generalization and Open Questions

A moment’s thought shows that Theorem 3.4 generalizes readily to
any collision operator which satisfies the same continuity property, mass
conservation and energy dissipation as Qe. These properties are listed in
Lemmas 3.1 and 3.4.

A major gap in our results is the uniqueness question. The fixed point
theorem which we used makes no assertion about uniqueness. We tried to
prove uniqueness (and existence) via a contraction mapping argument but
were unable to prove that T is contractive in the norm || · ||2 defined earlier.
It is possible that a contraction mapping argument will apply with respect
to a suitably weighted L1-norm; our efforts to find such a norm were in
vain. It also is to be expected that diffusive equilibria are stable attractors
for time-dependent solutions of the spatially homogeneous initial value
problem.

The uniqueness for the isotropic solution (for a given normalization) is
expected by analogy with the equilibrium solution for the Boltzmann
equation. However, it should not be expected for fully 3D, possibly aniso-
tropic solutions. In fact for such solutions, existence is trivial since we
have already the isotropic solution. If E(|v|) denotes this solution, then
E(|v− v0 |), where v0 is an arbitrarily given vector, is also a solution, because
of the translation invariance of Eq. (16).
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